

Grayscale Laser Lithography with Heidelberg Instruments DWL Series

Hideo Jotaki Heidelberg Instruments KK

Product Overview

Heidelberg Instruments Product Lines Overview

Acousto-optic modulator and deflector

Exposure strategy: The raster scan

INSTRUMENTS

Exposure strategy: The raster scan

VPG' 1400

Line Modulator

VPG⁺

Small Area Volume Pattern Generators

Large Area Volume Pattern Generators

The Grating Light Valve

nn i nn

INSTRUMENTS

GLV: The Grating Light Valve:

A 1D-spatial light modulator:

Ribbons of silicon-nitride on silicon chip; upand-down-position changed by voltage

- → Groups of ribbons form a diffractive grating
- \rightarrow 3 variable and 3 fixed ribbons per pixel
- → Modulating laser light as per design data

Exposure strategy VPG⁺: Raster scan, continuous scrolling

Exposure strategy VPG⁺: Raster scan, continuous scrolling

Stage Position

► X

The DMD[™]

INSTRUMENTS

DMD[™] = digital multimirror device

- MEMS device
- Each pixel consists of an aluminum micromirror
- Two bias electrodes tilt the mirror either to +10° or -10°
- ON (+10°): Mirror reflects light into lens, pixel is bright
- OFF (-10°): No reflection, pixel is dark
- DMD contains more than 442,000 micromirrors

Simplified representation of two tilted mirrors (i.e. two pixels) in a Texas Instruments DMD™

Schematic adapted from Marc J. Madou, Fundamentals of Microfabrication and Nanotechnology, Volume II, © CRC Press 2012

Exposure strategy MLA series

The DMD[™]

Exposure strategy MLA series

NanoFrazor lithography

HEAT Modulator

Heidelberg Instruments Nano SwissLitho AG Technoparkstrasse 1 8005 Zurich, Switzerland

IN HEIDELBERG

noFrazorⁱ Explore

16 February 2021

NanoFrazor Thermal Cantilevers

Key features

- » Ultra-sharp tip (silicon)
- Integrated tip heater (resistive, up to 1100°C with 1 K resolution) »
- Integrated actuation (electrostatic for fast and accurate deflection) »
- Integrated topography sensor (unique AFM mode based on thermal distance sensor) »

Smart cantilever holder

- Exchange within 1 min »
- Access almost any sample »

NanoFrazor Cantilever made of Si

2 µm

Glowing tip heater

Tip with < 2 nm radius

Closed-Loop Lithography: Patterning & Imaging

Every few milliseconds:

- 1. Patterning one line with hot tip
- 2. Cool down tip in few microseconds
- 3. Image topography of written line
- 4. Feedback algorithm to adapt patterning
- 5. Patterning of next line

- "What You See Is What You Get"
- No separate metrology necessary after lithography
- Check and online adaption of patterning every few ms
- \Rightarrow Decrease total fabrication time
- \Rightarrow Increase accuracy and reliability

Principle of NanoFrazor

\$

Writing

R

Thermal probe

- » 10 nm sharp tip
- » fast and accurate deflection

- » micrometer resolution
- » 100x faster

Reading

in-situ high-speed AFM

- » Inspection
- » Metrology
- » Overlay & Stitching

unique distance sensor

- » Level plane & Autofocus
- » Drift corrections
- » Other calibrations

ŝ

Product Overview

The Basic Principle

Exposure strategy in DWL systems

Acousto-optic modulator and deflector

Exposure strategy in DWL systems

Challenges in grayscale lithography...

Maximum structure depth

Resist non-linearity

Proximity & process effects

... and our solutions

Stitching optimization

- Small intensity variations at the border between stripes
- Not visible in binary exposures

• Instead of spreading structures across multiple stripes...

... place them inside a single stripe and optimize the stripe position

Stitching optimization

Non-linearity & proximity effects

INSTRUMENTS

Shape Optimization: Linearization

- Resist does not respond linearly
 - Minimum energy needed for photoreaction
 - Exposure proximity effect
 - Lateral development effect
- \rightarrow Geometry dependent

GRAY SCALE OPTIMIZATION METHODS

INSTRUMENTS

Gray Value Table (GVT)

	100		640 640	
	X T	ransforming Gra	yValues 🛛	7 0
Sourcefile: H_Kugel_100mue_b.stl	Elle	Default Value	New Yalue	
STL units: 1000	1	0	0	Take Default
Siza X: 89927 fpml	2	1	1	
Sing 1/ 19853 [pm]	3	2	2	⊆lear
aiza v. aadoa jimij	4	3	3	head
Height 50000 [nm]	5	4	4	Food
	6	5	5	Save as
Resolution: 125 🔫 [nm] Generate Image	7	6	6	
Inversion na 🔻 Mode: lawar 🔹	8	7	7	Overwrite 127_ex.gv .
	9	8	8	
Millio Laura (El mun 10)	10	9	9	Qui
where Lens: Show Lic	11	10	10	
Grey Pixel Z50 + [nm]	12	11	11	
	13	12	12	
🔄 invert LIC 🔄 🔄 use gray edit	74	13	13	
🕱 use Gravitable: 127_ex.gvi 🔹 Edit	15	14	14	
	16	15	15	
Cancel	17	16	16	
	18	17	17	
	19	18	18	
	20	19	19	
	21	20	20	
	22	21	Z1	
	23	22	22	
	Z4	Z3	23	
	25	24	24	
	26	25	25	
	27	26	26	
	28	27	27 🔺	

- Maps design gray value to customized gray value
- Transformation at conversion level
- Decrease of gray level resolution

Automatic Intensity Correction(AIC)

- Assigns design gray value to energy level
- Transformation at exposure level
- Keeps gray level resolution

Large Area Gray Scale Lithography

Shape Optimization: Linearization

0

0

100

Gray Value

200

Why we need 1024 Grey Levels

Why we need 1024 Grey Levels

ļ

Works quite well, but... Target Cross Section ... can be very time consuming ... requires compromises ... fails for irregular designs Hexagonal microlens array Positions with same theoretical depth, but different local environment Top view \Rightarrow Same dose assignment leads to different resulting depth! Courtesy of IGI

Non-linearity & proximity effects BEAMER 3D-PEC

Shape Optimization: Genisys Beamer 3D PEC

Process chain for multilevel resist pattern

Non-linearity & proximity effects BEAMER 3D-PEC

Example: DOE

Maximum structure depth

So far: Limited to $\sim 55\,\mu m$ due to high absorption in upper resist layers

Now: Novel grayscale resist ma-P 1200 G

Resist Thickness — Dose

Resist Thickness — Dose

RESIST

MATERIAL IS IMPORTANT!

Maximum structure depth

Very recent results:

micro resist technology

Heidelberg Instruments Nano (SwissLitho AG)

error (1σ): 0.69 nm

discrete levels (1.5 nm)

NanoFrazor Explore

NanoFrazor Scholar

Heidelberg Instruments Nano (SwissLitho AG)

Thermal Scanning Probe Lithography

3D patterning with vertical resolution < 1 nm

discrete levels (1.5 nm)

0

Published examples for 3D grayscale

Hologram in Si (700 nm deep) Kulmala *et al.*, SPIE, 2018

Nanofluidic Brownian Motors Skaug *et al.*, **Science**, 2018

Phase Plates in SiN membranes Hettler *et al.*, Micron, 2019

Topographies for stem cells Tang *et al.*, ACS Appl. Mat., 2019

Optical Fourier Surfaces Lassaline *et al.*, submitted to Nature, 2020

Photonic molecules Rawlings et al., Scientific Reports, 2017

3D Nanofluidics

» Ratchets with nm accuracy

- » Nanoparticles sorting using Brownian Motors
- » Particles with 1 nm size difference move in opposite directions

Skaug et al., Science, 2018

Thank you for your attention!

Heidelberg Instruments Mikrotechnik GmbH

Tullastr. 2 69126 Heidelberg Germany Phone +49 6221 3430-0 www.himt.de www.thelithographer.com

The power of direct writing