

『原子層堆積技術(ALD)による成膜技術』

Super high-dielectric constant AlO_x/TiO_y nanolaminates deposited by the atomic layer deposition technique (for diamond MOSFETs)

劉 江偉(Jiangwei Liu)

独立研究者 機能性材料研究拠点 国立研究開発法人物質·材料研究機構

Co-authors: 小出 康夫、達 博@NIMS Elida de Obaldia, Orlando Auciello@University of Texas at Dallas, USA

Why diamond?

Property (Relative to Si)	Si	GaAs	SiC	GaN	Diamond
Band gap energy	1	1.3	3	3.1	5
Critical breakdown field	1	1.3	12.3	11.7	33.3
Thermal conductivity	1	0.3	3.1	0.9	13.3
Thermal expansion coefficient	1	1.6	1.6	2.2	0.03
Dielectric constant	1	1.1	0.9	0.8	0.5
Electron mobility	1	5.7	0.7	0.8	3.0
Hole mobility	1	0.7	0.1	0.4	6.3
Saturated carrier velocity	1	1.2	2	2.2	2.7
On-losses decrease (BFOM)	1	13.8	17.0	19.0	187.5
Switching loss decrease (BHFFOM)	1	9.6	105.9	109.5	6986
Power-frequency product (JFOM)	1	2.4	605	662	8083
Thermal limitation (KFOM)	1	0.16	4.6	1.5	30.9

$$JFOM = \left(\frac{E_C v_s}{2\pi}\right)^2$$

 E_C : Breakdown field v_s : Saturation velocity

 $KFOM = \sigma_T \left(\frac{cv_s}{4\pi\varepsilon}\right)^{1/2}$

σ_T: Thermal conductivity *c*: Light speed *ε*: Dielectric constant

B. J. Baliga, IEEE Electron Dev, Lett. **10**, 455 (1989).

Background Why AlO_x/TiO_y gate nanolaminate?

Background Atomic layer deposition equipment for high-k materials

Picosun Altech, Japan @NIMS

Samco, Japan @NIMS

Ensure Nanotech. China @Tokyo University & NIMS

Ultratech savannah, USA @University of Texas, Dallas

Chemical deposition → Physical pulse/purge process → Two precursors

 $\mathbf{TMA} + \mathbf{H}_2 \mathbf{O} \ 2Al(CH_3)_3 + 3H_2O \rightarrow Al_2O_3 + 6CH_4$

TMA+O₃ $2Al(CH_3)_3 + O_3 \rightarrow Al_2O_3 + 3C_2H_6$

Merits:

- ✓ Low temperature process
- ✓ Controllable film thickness
- Corresponding to complex device structures

Experimental and Results Metal/AlO_x/TiO_y nanolaminate/metal

AlO _x /TiO _x Thickness	Precursor	Multilayer Thickness	Buff. Lay. (AlO _x)	Total Th.	Tem.	Leakage current at -2.5 V	C _{max}	k
0.507/0.535 nm	water	156.3 nm	5.35 nm	161.7 nm	250 °C	$1.78 \times 10^{-6} \mathrm{A} \mathrm{cm}^{-2}$	0.76 μF cm ⁻²	138
0.321/0.702 nm	water	153.45 nm	5.35 nm	158.8 nm	250 °C	1.53 × 10 ⁻⁶ A cm ⁻²	1.24 μF cm ⁻²	223
0.321/0.702 nm	<mark>ozone</mark>	153.45 nm	5.35 nm	158.8 nm	250 °C	$1.38 \times 10^{-3} \mathrm{A} \mathrm{cm}^{-2}$	<mark>0.14 μF cm⁻²</mark>	<mark>23.6</mark>
0.321/0.702 nm	water	52.88 nm	5.35 nm	58.23 nm	250 °C	$2.23 \times 10^{-7} \mathrm{A} \mathrm{cm}^{-2}$	1.69 μF cm⁻²	111
0.321/0.72 nm	water	52.05 nm	5.35 nm	57.4 nm	150 °C	$2.11 \times 10^{-7} \mathrm{A} \mathrm{cm}^{-2}$	0.83 μF cm ⁻²	53.8

Experimental and Results Fabrication of nanolaminate/diamond MOSFETs

Table 2. Comparation of electrical properties of the AlO_x/TiO_y nanolaminate / H-diamond / H-diamond MOS capacitor with the TiO_y/AlO_x bilayer / H-terminated capacitor.

	d _{AlOx} (nm)	d _{total} (nm)	J (A/cm ²)	C _{max} (µF/cm ²)	k total	ktioy knanolam	V _{FB} (V)	V _{hys} (V)
AlO _x /TiO _y nanolaminate	5.0	57.5	4.5×10 ⁻³	1.06	68. 7	306	-0.1	0.1
TiOy/AlOx bilayer	4.0	29.0	1.9×10 ⁻⁴	0.83	27.2	58.0	-1.3	0.06