半導体製造用ALD原料に関する研究開発

(株)トリケミカル研究所 徐永華 2021/12/22

TCLC Tri Chemical Laboratories Inc.

発表内容

1. イントロダクション
* 会社概要

*半導体製造技術の発展史

- 2. ALD成膜の特性、及び原料に対する基本要求、評価方法
- 3. High-k 膜用原料(主にHf系)に関する研究開発
- 4. ALDによるMgO成膜、及び酸化源に対する考察
- 5. 半導体技術進歩によるALD原料開発の今後の課題

(株)トリケミカル研究所

本社所在地:山梨県上野原市上野原8154-217 創立:1978年12月

資本金:約33億円

従業員:194名(単体)

製品品目:半導体用材料、光ファイバー用材料、太陽電池 用材料、化合物半導体用材料、触媒、特殊試薬等

1978 創立			2007 大証へ上場	20 東語)18 証一部へ上場
1980	1990	2000	2010		2020
1979 電電公社に光ファイ バー用の高純度四塩化 ケイ素を出荷し、高い評 価を受けた。	1987 CVD材料としての各種 金属錯体の合成に成功	2(台	004 湾に支店設立	2016 韓国にSK material社 とのJV 設 立	2017 台湾に子会 社設立

1-2. 半導体先端プロセスの進歩

現在半導体に使われている主なALD膜とその応用

DRAM capacitor dielectric	ZrO2, Al2O3, HfO2
MOS gate dielectric	HfO2
CMOS Image sensor	SiO2, Al2O3, HfO2, TiO2, Ta2O5, SiN
RF BEOL capacitor dielectric	ZrO2, Al2O3
FRAM passivation	SiN
W contact liner	W
DRAM capacitor electrode	TiN
Double patterning/sacrificial spacer	SiO2
MOS gate electrode	TiAlN, TiN
MOS gate capping layer	Ta, Co
Gate spacer	SiN, SiO2
Contact metal / silicide	Co, Ru, NiSi, CoSi2
W barrier	TiN
Cu barrier	TaN, Co
Cu capper	Со
Cu seed	Ru, Co
Resistive memories	Ge-Sb-Te, HfO2, TiO2, Ta2O5, La2O3

<u>ALD成膜の特性</u>:

low deposition temperature, smooth, high conformal, pine-hole free, low impurity, precise thickness and composition control

<u>ALD成膜の短所</u>:

低い成膜速度、原料制限、高温成膜制限

ALD用原料に対する基本要求:

熱安定性、蒸気圧、高い表面反応速度、高い成膜速度、高純 度、低価格、安全性(低危険性、有害性)、取り扱い易さ等

2. ALD原料に対する基本要求とその評価方法

<u>熱安定性</u>: 1)長期保管時、配管内導入時の安定性 2)ALDモードを保つ安定性

PDMAT: Metal barrier—TaNの成膜に使われている原料

PDMATの熱分解生成物DMAの濃度を計測する。

脱気した1分後の容器内のDMA濃度と容器温度との関係

2. ALD原料に対する基本要求と評価方法

Vapor pressure curve for TDMAZr

Clausius-Clapeyron equation

log (P/Pa) = 12.3 -3.72E+03 /T

3. High-k 膜用原料に関する研究開発

*ALDによるZrO2成膜用原料

	HfI4	
Cl2		
Me2	$Hf(O^tBu)4$	
Su)4	Hf(mmp)4	
ae)4	Hf(O ^t Bu)2(mmp)2	
Su)2(dmae)2	Hf(ONEt2)4	
Pr)2(dmae)2		
)4	Hf(NMe2)4	
[e2)4	Hf(NEt2)4	
t2)4	Hf(NEtMe)4	
tMe)4	Hf[N(SiMe3)2]2Cl2	
6iMe3)2]2Cl2	Hf(NO3)4	

Cp2Zr Cp2Zr] $Zr(O^tB$ Zr(dma Zr(O^tB $Zr(O^iP)$ Zr(thd) Zr(NM Zr(NEt

Zr(NEt Zr[N(S

ZrCl4

ZrI4

* ALDによるHfO2成膜用原料

3. High-k 膜用原料に関する研究開発

* ALDによるZrO2成膜用原料 * ALDによるHfO2成膜用原料 Zr(NMe2)4 Hf(NMe2)4 Zr(NEtMe)4 Hf(NEtMe)4

> 原料の熱安定性の向上で、より高い 温度での成膜により、膜中の不純物 の低減と結晶率の向上を実現できる。

phase k film	HfO2	ZrO2
amorphous	21	23
monoclinic	16-18	20
cubic	26.2	33.6
tetragonal	28.5	38.9

 $CpZr(NMe_2)_3$

3. HfO2のALD成膜に使う原料の開発

原料間の蒸発性及び安定性の比較

	分子量	T50(°C)*	DSC上の分解温度 (℃)
CpHf(NMe ₂) ₃	375.81	187	320
(MeCp)Hf(NMe ₂) ₃	389.83	189	328
(EtCp)Hf(NMe ₂) ₃	403.86	199	325
(iPrCp)Hf(NMe ₂) ₃	417.89	203	325
(nPrCp)Hf(NMe ₂) ₃	417.89	210	324
(MeCp)Hf(NEtMe) ₃	431.91	216	295
(EtCp)Hf(NEtMe) ₃	445.94	220	295
(nPrCp)Hf(NEtMe) ₃	459.97	232	295
(iPrCp)Hf(NEtMe) ₃	459.97	236	297

*T50:TG-DTA測定で原料が50%蒸発した時の温度

3. HfO2のALD成膜に使う原料の開発

3. HfO2のALD成膜に使う原料の開発

理論計算による原料安定性の評価

 半経験的分子軌道法(MOPAC(PM6))により、各原子間の 結合エネルギーを計算できる。

例:HOCの生成エネルギー、結合エネルギーの計算

		CpHf(NN	/le ₂) ₃
分子量(g	g/mol)	375.82	
DSC分解》	昰度(°C)	320	
生成エネルギー(kcal/mol)		-376,771.79	
	RCp-Hf	4.453	
		4.3216	
結合エネル ギー (eV)		4.2805	合計 21 6854
		4.2286	21.000 1
		4.4017	
	NR2-Hf	17.3091	
		17.3844	
		17.3174	

_____ لا__

理論計算による原料安定性の評価

116日 約	DSC上の分	結合エネル	・ギー (eV)	
口1/示不予	解温度 (°C)	RCp-Hf	RR' N-Hf	and a second
			17.06	a to the second s
	277		17.02	
$(1)(1)(2)_4$	211		17.72	
			16.75	
			17.31,	2300 0 m
CpHf(NMe ₂) ₃	320	21.6854	17.38,	
			17.32	a contraction of the second
			17.31,	A CONTRACT
(MeCp)Hf(NMe ₂) ₃	328	22.5529	17.34,	Jos S and I
			17.31	and the second s
			17.35,	
(nPrCp)Hf(NMe ₂) ₃	324	22.3901	17.31,	3.0 .0 8
			17.27	
			16.91,	X
(MeCp)Hf(NEtMe) ₃	295	22.2881	16.95,	Jose a star
			16.94	- John Jo

4. 酸化源による成膜への影響

MgO成膜速度の温度依存性

膜中C含量の温度依存性

4. 酸化源による成膜への影響

<u>ALDによるAI2O3成膜</u>

原料:TMA; 酸化源:H2O,O3

半導体製造はこれから

DRAM: 微細化、3D 構造、High A/R

Logic: 微細化、3D 構造 が更に進む。

最近、半導体メーカーさんからの主なご要望

- 1) 優れたカバレッジ
- 2) 新規膜
- 3) 選択成膜性
- 4) particle問題
- 5) 安さ

優れたカバレッジを実現するために

影響因子	原因	対策
	原料の分解	熱安定の向上 (原料)
CVD	原料間の混合	パージ・真空引き(原料と装置)
	反応副生成物と原料との混合	パージ・真空引き(原料と装置)
原料供給不足	微細化(High A/R, 大表面積)、 大量ウェハー処理	大量供給、供給時間延長 (原 料とプロセス)
GPCの温度依存性	反応不十分	反応性の向上(原料や酸化源 の選択、表面改質)

表面吸着率:
$x = 1 - e^{-K t}$
$\mathbf{K} = \mathbf{v} \cdot \mathbf{e}^{-\mathbf{E}\mathbf{a}/\mathbf{R}\mathbf{T}}$

成膜速度の温度依存性

No.22

From : Q. Xie et al., J. Appl. Phys. 102, 083521 (2007)

*酸化源の影響

*原料自身の影響

どうして大流量が必要?

No.25

https://ja.wikipedia.org/wiki/%E3%82%A6 %E3%82%A7%E3%83%8F%E3%83%BC

平面TEM像観察 https://www.mst.or.jp/casestudy/ tabid/1318/pdid/494/Default.aspx

Batch process では 150 wafers/batch,

成膜面積が何と 900 m^2 に達する。

半導体製造プロセスでのALDの応用について紹介した。 ALD法で作った膜が現在半導体チップに幅広く利用されてい ることがわかる。

ALD成膜の特性、及び原料に対する基本要求、評価方法な どを紹介しながら、最近展開しているHf系のhigh-k材料用原 料の開発現状を説明した。理論計算が原料開発にも有効に 使えることがわかった。

ALDによるMgO成膜などを通じ、ALD原料開発の課題について考察を試みた。半導体製造技術の進歩に連れ、今後反応性が高く、短時間でチャンバーへ大量に供給できる原料の開発がもっと求められると思う。

Thank you .