

鈴木左文

東京工業大学 工学院 電気電子系

#### 100kV電子ビーム描画装置を用いた 3次元構造を有するテラヘルツ帯発振デバイスの形成







#### テラヘルツとは

- 共鳴トンネルダイオードテラヘルツ発振器
- これまでのデバイス作製結果
- 3次元的な構造形成手法
- まとめ

#### テラヘルツって?



◇ 光と電波の中間の未開拓領域
 ◇ 種々の応用への期待
 イメージング・分光分析(生体、物性、化学物質・・・)、
 セキュリティ、医療、大容量通信・信号処理 ・・・・







製品ライン、空港、スタジアム等での3次元透過検査















### テラヘルツへの新たな医療応用





高出力コヒーレント動作、>2THz広範囲周波数カバー、高感度検出などが新たに必要

## 未来の通信・インターフェース





www.intel.co.jp/content/www/jp/j<del>a/si</del>licon Spine Switch DATA CENTER innovations/6-pillars/interconnect.html Leaf Switch **TOR Switch** Data center RACK interconnect Processor interconnect ・サーバ・ラック間 ・プロセッサ間 SoC ・ダイ間 interconnect



未来の情報通信(Beyond5G/6G)や
 空間コンピュータ、データセンター
 などでは、新たな"モノーモノをつなぐ"、
 "見る"技術が求められており、広帯域・高分
 解能のテラヘルツへの期待が高まっている



ALMA望遠鏡









宇宙から注ぐテラヘルツを 観測。ガスや塵といった今 まで見えなかったものが見 えるように

| 受信器  |                                                                | 開発機関 | 周波数 (GHz) | 雑音温度 | 波長 (mm) | バンド |
|------|----------------------------------------------------------------|------|-----------|------|---------|-----|
| HEMT | ASIAA (Taiwan) / NAOJ (Japan)                                  |      | 35 – 50   | 32   | 6-8.6   | 1   |
| HEMT | (Sweden) / NOVA (Netherlands)<br>/ INAF (Italy) / NAOJ (Japan) | 0S0  | 67 - 116  | 47   | 2.6-4.5 | 2   |
| SIS  | HIA (Canada)                                                   |      | 84 - 116  | 60   | 2.6-3.6 | 3   |
| SIS  | NAOJ (Japan)                                                   | 5    | 125 – 163 | 82   | 1.8-2.4 | 4   |
| SIS  | (Sweden) / NOVA (Netherlands)                                  | OSO  | 163 – 211 | 105  | 1.4-1.8 | 5   |
| SIS  | NRAO (US)                                                      |      | 211 – 275 | 136  | 1.1-1.4 | 6   |
| SIS  | IRAM (France)                                                  |      | 275 – 373 | 219  | 0.8-1.1 | 7   |
| SIS  | NAOJ (Japan)                                                   |      | 385 - 500 | 292  | 0.6-0.8 | 8   |
| SIS  | NOVA (Netherlands)                                             |      | 602 - 720 | 261  | 0.4-0.5 | 9   |
| SIS  | NAO1 (lanan)                                                   |      | 787 - 950 | 344  | 0.3-0.4 | 10  |



https://alma-telescope.jp/alma10th

半導体のテラヘルツ信号源を作るには?

#### 半導体デバイスは小型で使いやすい!半導体でテラヘルツが出せたら良い!



₩

Tokyo Tech







共鳴トンネルダイオードは世界で一番早いアクティブ電子デバイス、2THz信号発生

共鳴トンネルダイオードの歴史

#### RTD

1973 Proposal (Tsu and Esaki)

**1974** First operation@77K, GaAs/GaAlAs (Chang, et al)

**1985** Room-temperature operation GaAs/GaAlAs (Tsuchiya, et al)

**1987** InGaAs/AlAs RTD (Inata, et al)

#### RTD 発振器

- **1984** 18GHz @<200K, GaAs/GaAlAs Integrated into coaxial cable (Sollner, *et al*)
- **1985** 420GHz @R,T., GaAs/GaAlAs Waveguide (Brown, *et al*)
- **1991** 712GHz @R.T., InSb/InAlSb Waveguide (Brown, *et al*)
- **1997** 650GHz @R.T., InGaAs/AlAs Planar slot array (Reddy, et al)



2010 1.04THz@R.T., InGaAs/AlAs Planar slot antenna (Suzuki, Asada, *et al*)
2017 1.98THz@R.T., InGaAs/InAs Planar slot antenna (Izumi, Suzuki, Asada)



共鳴トンネルダイオード (RTD)





共鳴トンネルダイオード (RTD)





共鳴トンネルダイオード (RTD)











#### 高出力化 >400GHzで世界最高の単体出力 ・素子単体の高出力化 10 スロット オフセット給電 高電流密度RTD 0 単体出力 (dBm) -10 1-10µW 10-100µW ~0.4mW -20 -30 オフセットリング 空洞共振器 放熱大面積RTD -40 東工大(🔶 -50 ity Resonator ~1mW ~1.4mW 200 400 600 800 1000 周波数 (GHz)

・アレイ化



従来のスロット構造から空洞共振器構造に 変更することにより大幅な特性向上が可能 →3次元的な構造形成が必要

### 高周波のための円筒形空洞共振器











▶低損失、低インダクタンスの円筒空洞共振器構造 ▶構造最適化により約2.8 THzまで発振可能

(Bezhko, et al, JJAP, 59, 032004, 2020; JJAP, 60, 121002, 2021)

空洞共振器の形成プロセス













大きな幅のピラーだと寄生容量がつき発振周波数が低下 →RTDメサ頭部とくっつくV型ピラー電極の形成が必要

ピラー形成のためのレジストパターン





V型ピラーを作るにはレジストにスロープ形状を作らなければならない





#### 現在、東工大で保有する電子ビーム露光装置





スポットビーム、ベクタースキャン方式 ビーム径:3nm以下(100kV)、最小線幅:8nm つなぎ精度:仕様20nm/実測7.6nm(フィールドサイズ1000µm) 重ね合わせ精度:仕様20nm/実測9.8nm(フィールドサイズ1000µm)







https://www.genisys-gmbh.com/3d-pec.html

モンテカルロシミュレーションによってPSF (Point-Spread Function)を求め近接効果補正

グレートーンリソグラフィ



## Normalized dose-depth correlation (contrast curve)





#### Dose modulation for the PMMA pattern



### 形成した構造





![](_page_22_Picture_3.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Figure_3.jpeg)

\*[ Mikhail Bezhko et al., IRMMW-THz 2021 ]

### その他の形成構造

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_4.jpeg)

2次元アレイ・メタマテリアル

![](_page_24_Picture_6.jpeg)

まとめ

![](_page_25_Picture_1.jpeg)

### テラヘルツの利用シーンは色々なところに (ただ、決定的な応用はまだ無い)

- テラヘルツ信号源の開発は着々と進んでいる
- 共鳴トンネルダイオードは有望なデバイス 高周波~2THz動作、単体高出力~1mW
- 高性能なデバイスの実現には多層レジストと露光技術が 必要
- ●東工大ARIMは微細構造形成のノウハウを有する

![](_page_26_Picture_0.jpeg)

【実習に使う装置名】 電子ビーム露光装置日本電子JBX-8100、および、 マスクレス露光装置大日本科研MX-1205 【内容】EBとマスクレスのMix and Match を体験 【日時】2024年3月7日(木) 10:00~17:00 【場所】東工大大岡山キャンパス 【定員】2名(既に達しました) 【料金】2,000円

次の機会でのお申込みをお待ちしております。

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_27_Picture_0.jpeg)

# Thank You

![](_page_27_Picture_2.jpeg)