

GenlSys KK Wednesday, February 21, 2024

電子線描画におけるプロセス補正のご紹介

GenlSys株式会社

アプリケーション・エンジニア 清水 諭

2024-02-28 AIST Seminar

About GenISys

GenISys offers software solutions for optimization of micro and nano fabrication processes

Company:

- Founded in 2005, privately owned
- Headquartered in Munich, Germany
- Offices in USA-California, Japan-Tokyo
- Global Technical Support
- Fast, Flexible, Responsive

Products

 Electron and Laser Beam Direct Write Software Market leader for Gaussian beam direct write systems Installed at most major nano-fabrication centers worldwide Has become a MUST for advanced e-beam lithography 	BEAMER
 Monte Carlo simulation software MC- Simulation of PSF for e-beam lithography modeling and correction Process Calibration, PSF visualization, extraction and management 	TRACER
 3D lithography simulation software Proximity Lithography / Projection Lithography (stepper / scanner) Electron Beam Lithography Laser Beam Lithography (Heidelberg Instruments laser systems) 	LAB
SEM Image Analysis & Metrology • Metrology software for SEM	Pro SEM

Background & Model

- Calibration
- Use Cases
- Summary

Optimized Exposure

Observation

1:1 L&S

On Target CD at given Base dose but LER is high (not well resolved)

Observation

1:1 L&S

at higher dose (+ 10uC/cm²)

On Target CD at given Base dose but LER is high (not well resolved)

low LER (well resolved) but off the Target CD

Under a proper dose, compensation for the process effect is necessary

Process Blur

- All we can observe is convolved result of Exposure, Resist Process, Pattern Transfer and Metrology
 - $CD_{measured}$ = Exposure (CD_{Target}) \otimes <u>**Process</u></u> \otimes Transfer \otimes Metrology</u>**
- Process Blur includes contributors from
 - Spot Size, Forward Scattering, Noise, Resist Blur, Lateral development (gamma * log (D)), ...
- Process Bias includes contributors from
 - Lateral Development, Resist Shrinkage / Swelling, Pattern Transfer (Sidewall Angle / Footing), Metrology Offsets

Process Blur

Process Blur

Background & Model

Calibration

- Use Cases
- Summary

Experiment

• Lines are exposed

- at varying pattern densities
- with Long Range Proximity Effect Collection
- through a dose series

Keep in mind: we can only observe the convolved result of $CD_{measured} = Exposure (CD_{Target}) \otimes Process \otimes Transfer \otimes Metrology$

Experiment

With or Without PEC

Calibration: Process Blur

• Process Blur = 25 nm

Calibration: Base Dose

Iso Focal Point (Cross Point)

• Process Blur = 25 nm

Calibration: Global Bias

• Base Dose = $165 \,\mu\text{C/cm}^2$ Dose vs. CD nm • Global Bias = -20 nm パターン密度100%(パッド) ― 700 50%(1:1 LS) 600 500 クロスポイントにおける1:1 L&S幅と 25%(1:3 LS) 設計値との差分を全体バイアス値と 400 して設定。 300 パターン密度0%(孤立線) 200 100 \cap 120 135 150 165 180 195 210 225 240 255 270 285 300 Base Dose (uC/cm^2)

Calibration: Lateral Development

Calibration: Lateral Development

- Process Blur = 25 nm
- Base Dose = $165 \,\mu\text{C/cm}^2$
- Global Bias = -20 nm
- Lateral Bias

iso line (0%) = 4 nm 1:3 (25%) = 18 nm 1:1 (50%) = 29 nm large Pad (99%) = 40 nm

クロスポイントに幅が出来る原因の一つとして「横方向現像」を 提案しています。周囲のパターン密度が異なることで、該当パタ ーンエッジでのエネルギーコントラストが変わり得る、との観点 からになります。レジスト感度(γ)にも左右されます。

BEAMER Correction

BEAMER Correction

- Process Blur = 25 nm
- Base Dose = $165 \,\mu\text{C/cm}^2$
- Global Bias = -20 nm
- Lateral Bias

iso line (0%) = 4 nm1:3 (25%) = 18 nm 1:1 (50%) = 29 nm large Pad (99%) = 40 nm

Proximity Effect Cor	rection © × © Configure Quick A	 Show Energy Density Show Cumulative Radial Energy Behaviour X Avia: O L with a C O L
General	Correction Lawer Selection	
Accuracy Advanced Comment	Layer(s) * PSF Representation Archive Gaussian Approx Numerical PSF Layers: ; Resists: PMMA 100 nm; Energy [kV]: 100; Archive Global Archive View Comment Effective Short Range Blur 0.025 Nue 0.100000 Include Short Range Correction	Behaviour Y-Axis: O Logarithmic O Linear
	✓ Lateral Development Parameters	Separation at 0.1253 um. No additional Separation necessary. Additional Information: Min. layout independent LR dose factor = 0.7294

- **BEAMER** Correction
- Process Blur = 25 nm وشوشية بشيف بوأبية أبير أبشية وفوق وفريق وفريد أبير أبيتها وفريق وفريق Effective Short Range Blur... • Base Dose = $165 \,\mu\text{C/cm}^2$ 0.025 • Global Bias = -20 nm • Lateral Bias iso line (0%) = 4 nm1:3 (25%) = 18 nm Bias [um] 1:1 (50%) = 29 nm -0.02 large Pad (99%) = 40 nm Lateral Developme Parameters... : In GDSII Lateral Dev. Correction Parameters ⊡ Bias PSF-density [-] Bias [um] -0.004 0 0.25 -0.018 PEC 0.5 -0.029 <

BEAMER Correction

- Process Blur = 25 nm
- Base Dose = $165 \,\mu\text{C/cm}^2$
- Global Bias = -20 nm
- Lateral Bias
 - iso line (0%) = 4 nm 1:3 (25%) = 18 nm 1:1 (50%) = 29 nm large Pad (99%) = 40 nm

Agenda

- Background & Model
- Calibration
- Use Cases
 - Weizmann Institute of Science
 - Univ. Queensland
- Summary

Weizmann Inst. of Science, Diana Mahalu et al.

Calibration of Process Data resulted in

800

Base Dose [uC/cm^2]

Weizmann Inst. of Science, Diana Mahalu et al.

Process Corrected

No process corrected

Source: מכוז ויצמן למדע WEIZMANN INSTITUTE OF SCIENCE

• Excellent Results on different layouts at different densities

- Background & Model
- Calibration
- Use Cases
 - Weizmann Institute of Science
 - Univ. Queensland
- Summary

Univ. Queensland, Elliot Cheng et al.

Our project goals – an *automated metrology workflow*

- Develop a complete and automated workflow for design, lithography correction (TRACER, BEAMER), fabrication, characterisation (ProSEM), and analysis
- Feed analysis results back into TRACER to optimise EBL parameters for **minimising line-edge-roughness** (LER)

Univ. Queensland, Elliot Cheng et al.

Univ. Queensland, Elliot Cheng et al.

THE UNIVERSITY OF QUEENSLAND

CD/LER Summary: ARP6200 on SOI – target CD 200nm

Elliot Cheng, Daniel Peace, Zach Degnan Centre for Microscopy and Microanalysis (CMM) The University of Queensland, Brisbane, Australia

THE UNIVERSITY OF OUEENSLAND

EBL Writing Strategy + Large Data Analysis + Etch Recipe

61% improvement on the ARP6200 on SOI using optimal beam parameters from LER study

Agenda

- Background & Model
- Calibration
- Use Cases
- Summary

Summary

- •近接効果補正 → 電子線散乱モデルによる補正
- プロセス補正 → 上記以外の擾乱要因の補正

1)現像条件、化学反応、レジスト解像度、装置振動、SEM観測精度 → Beam Blurとしての取り扱い

2) クロスポイントを基準ドーズとして選択

→ 擾乱要因(Blur)に依らず、設計線幅が得られやすい 3) クロスポイントにおける設計線幅からのずれ

→ 設計値バイアス (パターン・バイアス) として補正

4) クロスポイント領域内でのパターン密度ごとの微小な線幅のずれ
 → 横方向現像成分としてパターン密度ごとに個々に補正

Join Us!

Position Overview

We are looking for a highly motivated Applications Engineer for the GenlSys Japan team to support sales and adoption of GenlSys' products. Topics can be on lithography corrections, process simulation, and layout optimization as well as advanced SEM-based image analysis, metrology, and inspection. Cooperation with tool vendors or working on related instruments is an important part in both cases. We are offering a varied and exciting position in a unique environment of nanoscience and leading-edge nanotechnology serving international communities. You will be part of and receive second line support from a team of innovative, results-oriented, and self-dependent experts.

About GenISys

GenISys has become a global market leader in the field of electron-beam lithography software and is expanding to related markets of lithography and metrology. Our team combines deep technical expertise in layout data processing, image analysis, physical modelling, and measurement algorithms with world-class software engineering and nanofabrication knowledge for development and production.

GenISys www.genisys-gmbh.de

<u>Global Headquarters</u> GenISys GmbH Eschenstr. 66 D-82024 Taufkirchen, Germany Phone: +49-89-3309197-60 Fax: +49-89-3309197-61 sales@genisys-gmbh.com

Asia Pacific & Japan GenISys K.K. Tokyo Japan Phone: +81-3-6423-0611 ap@genisys-gmbh.com North America GenISys Inc. Santa Clara, California, USA Phone: +1-408-353-3951 usa@genisys-gmbh.com

